Search results

Search for "diffusion coefficient" in Full Text gives 77 result(s) in Beilstein Journal of Nanotechnology.

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • rate of collisions between two spheres in solution, normalized by the number of binding sites for that protein, where RNP is the radius of the NP, NA is Avogadro’s number, RA is the effective adsorbate radius, D is the pair diffusion coefficient given by taking the viscosity η = 8.9 × 10−4 Pa·s. We
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • elements (CPE) [65]. According to Table 2, the charge transfer resistances of all Ge@C electrodes are much lower than the values of the pure Ge electrode, and Ge/C-iM750 exhibits the lowest value. The ionic conductivity was evaluated using the lithium-ion diffusion coefficient () using the following
PDF
Album
Full Research Paper
Published 26 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • space charge that extends for around 0.16 μm inside the first InP:Zn region. As a matter of fact, the diffusion of Zn impurities is likely to occur due to the high temperatures required for the growth of the material and the high diffusion coefficient of Zn in InP [30]. Therefore, the true spatial
PDF
Album
Full Research Paper
Published 14 Jun 2023

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • Figure 4a). In fact, kF = 3Dm/ℏ [47], where D = [48] is the quasiparticle diffusion coefficient and m is the mass of the electron. From the value of D reported in Table 1, we get kF ≈ 1.3 and then α = 0.51. In contrast, data are very well reproduced by the WHH theory with α = 0, even though the points
PDF
Album
Full Research Paper
Published 05 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • ). Molecular dynamics simulations were performed using the LAMMPS [48] package using an NVT ensemble with a timestep of 0.1 fs. The TIP4P/2005 [49] water model was used since it provides a satisfactory description of self-diffusion coefficient [50], phase diagram, vapor–liquid equilibria [51][52], vapor
PDF
Album
Full Research Paper
Published 02 Jan 2023

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • shows that the diffusion process regulates the electrochemical reaction of ferrocyanide. Given that the diffusion coefficient and electrolyte concentration were constant throughout all tests, the effective surface area (A) of the electrode had the greatest influence on the peak current (Ip
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • is the conductivity of the F layer [88][89], ξf = Df is the diffusion coefficient in the ferromagnetic metal, and Tc is the critical temperature of the superconductor [1][2]. We assume ℏ = kB = 1. We also assume that the SF interface is not magnetically active. We will consider the diffusive limit
  • Usadel equation has the following form [93]: Here, Ds is the diffusion coefficient in the superconductor, and Δ(x) is the superconducting order parameter (pair potential). From the Usadel equations, it can be shown that there is a symmetry relation between θ↑ and θ↓: θ↑(E) = (−E), where E is the energy
PDF
Album
Full Research Paper
Published 01 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • = r2/π2D, where r is the grain radius and D is the carrier’s diffusion coefficient. Consequently, as the particle radius decreases, a higher number of photogenerated carriers can reach the surface, where they might participate in a photocatalytic process [76]. Bismuth is often used as a nanoscale
PDF
Album
Review
Published 11 Nov 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • of 10 ps can be estimated as 10−9 m/10−11 s = 100 m/s. For the conventional spin diffusion, the spin memory length is where is the diffusion coefficient, τs is the Elliott–Yafet spin-relaxation time [46][47], τ is the charge transport relaxation time, and vF is the Fermi velocity. For the purpose
PDF
Album
Full Research Paper
Published 25 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • is the electrode active area (cm2), Dr is the diffusion coefficient (7.6 × 10−6 cm2·s−1), and C0 is the concentration of K3Fe(CN)6 (mol·cm−3). From the slope of the plot of Ip vs ν1/2, the effective surface area for bare GCE and ERGO/GCE was calculated to be 0.0707 and 0.121 cm2, respectively, which
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • parameters (including dimensionless velocity) for water/CuO and kerosene/CuO were calculated using MATLAB. They found that water/CuO nanofluids have a much higher velocity than kerosene/CuO systems. Therefore, both the previous study by the authors regarding diffusion coefficient and the Abid et al. study
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • electrons transferred in the redox reaction, D is the diffusion coefficient in solution (D = 6.8 × 10−5 cm2·s−1), C* is the concentration (mol·cm−3); v is the scan rate (100 mV·s−1), and A denotes the effective surface area of the electrode (cm2). The electrochemically active surface area was calculated to
PDF
Album
Full Research Paper
Published 03 May 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • was used as a model to demonstrate that a combination of polarization relaxation measurements and Kelvin probe force microscopy (KPFM)-based mapping of the Volta potential before and after the end of polarization can be used to determine the chemical diffusion coefficient of the ceria component of the
  • composite. The KPFM measurements were performed at room temperature and show diffusion coefficients in the range of 3 × 10−13 cm2·s−1, which is comparable to values measured for single-phase Gd-doped ceria thin films using the same method. Keywords: ceria; diffusion coefficient; Kelvin probe force
  • polarization experiments) to determine the chemical diffusion coefficient Dδ (in cm·s−1) by applying In ceria, the chemical diffusion coefficient is thought to be the diffusion coefficient for oxygen ions. The diffusion length L (in cm) is, in the case of the AFM-based measurements, the length scale that can
PDF
Album
Full Research Paper
Published 15 Dec 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • , respectively, termed as Gibbs–Marangoni concerning surface tension gradients and Bénard–Marangoni concerning thermal gradients [58][59][60][61][62]. The pattern and shape of the fractals depend on flux, thermal energy, surface energy, and diffusion coefficient of the clusters. The schematic shown in Figure 4
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • surface diffusion data for Pt(PF3)4 on hydroxylated or pristine SiO2 are not available, the obtained value of the surface diffusion coefficient, D = 2.85 × 10−7 cm2/s at 300 K, is within the range of values known for the typical surface diffusion coefficient of FEBID precursors [6][7][13]. Figure 2 shows
PDF
Album
Full Research Paper
Published 13 Oct 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • the terrace width of the multilayer pyramidal adsorbate islands and the linear size of the system. Lateral flux The lateral adsorbate flow on the first layer includes both free surface diffusion J0, defined according to Fick’s law J0 = −D↔∇x with a lateral diffusion coefficient D↔, and a diffusion
  • electrical field strength Dem. Dependence of the critical value of the electrical field strength on the adsorption coefficient α at different values of the vertical diffusion coefficient k∥. (a) Typical snapshots of the system evolution after the electric field is turned off at k∥ = 0.1, α = 0.06. The first
PDF
Album
Letter
Published 13 Jul 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • lead to decreased stability and an enhanced drug diffusion coefficient. No drastic change in temperature of the solution was observed after NIR irradiation. Hong et al. developed a system to estimate the photothermal conversion efficacy of GNRs for different irradiation laser powers and reported that
PDF
Album
Full Research Paper
Published 31 Mar 2021

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • time, t is the time and DP is the diffusion coefficient of phosphorous at the given temperature T, evaluated as , with D0 = 0.79 cm2/s and EP = 3.29 eV, following [24]. The radial doping profiles are also reported in Figure 4. The Seebeck coefficient of the doped nanowires is difficult to evaluate
PDF
Album
Full Research Paper
Published 11 Nov 2020

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • viscosity, ρf is the fluid density, α represents the thermal diffusivity, Cp represents a constant pressure for a specific heat value, k0 denotes a chemical reaction coefficient, (ρcp)f represents the heat capacity, DB represents the Brownian diffusion coefficient, Q0 represents the volumetric heat
  • generation, DT is the thermophoresis diffusion coefficient, σ is the electrical conductivity, β represents the Casson fluid parameter, and T represents the nanofluid temperature. The following similarity variables are taken into consideration: Finally, the ODEs describing the proposed flow problem can be
PDF
Album
Full Research Paper
Published 02 Sep 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • , diffusion coefficient D = kBT/6πηa, and thermodiffusion coefficient DT = STD (here ST is the Soret coefficient) in a solvent of viscosity η we dynamically created high-temperature gradients. To limit diffusion of the particle, one has to create an appropriate temperature gradient ∇T to produce a
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Effect of magnetic field, heat generation and absorption on nanofluid flow over a nonlinear stretching sheet

  • Santoshi Misra and
  • Govardhan Kamatam

Beilstein J. Nanotechnol. 2020, 11, 976–990, doi:10.3762/bjnano.11.82

Graphical Abstract
  • the nanoparticle material and the base fluid. In Equations 1–4, u, and v denote the velocity components along x and y axes, respectively, ρf is the base fluid density, a is a positive constant, DB is the Brownian diffusion coefficient, DT denotes the thermodiffusion coefficient, c is the volumetric
PDF
Album
Full Research Paper
Published 02 Jul 2020

A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer

  • Pavel M. Marychev and
  • Denis Yu. Vodolazov

Beilstein J. Nanotechnol. 2020, 11, 858–865, doi:10.3762/bjnano.11.71

Graphical Abstract
  • a single S layer if the thickness of the S and the N layers are about the superconducting coherence length [15]. Because of the large diffusion coefficient, DN ≫ DS, the N layer provides both a large phase concentration in the constriction leading to a single-valued current–phase relation (CPR) and
  • of the superconductor. As we show below, the presence of a relatively thick N layer with large diffusion coefficient and small minigap in the electron spectra provides efficient cooling of the constriction. To estimate the increase of temperature in the resistive state we use a two-temperature (2T
PDF
Album
Full Research Paper
Published 02 Jun 2020

Transition from freestanding SnO2 nanowires to laterally aligned nanowires with a simulation-based experimental design

  • Jasmin-Clara Bürger,
  • Sebastian Gutsch and
  • Margit Zacharias

Beilstein J. Nanotechnol. 2020, 11, 843–853, doi:10.3762/bjnano.11.69

Graphical Abstract
  • presents the pressure and temperature dependence of the diffusion coefficient D, and Equation 2 describes the covered distance as a function of time, t, adapted from [28]: where T and p are the process temperature and the process pressure, respectively, and Dn is the tabular value of the diffusion
  • coefficient at standard conditions. The general transport equation is described by the following Equation 3 [28]: where ρ is the density, c is the vapor concentration, time t, carrier gas velocity u, diffusion coefficient D and external vapor sources R. In Equation 3, the first term on the left-hand-side
  • convection [28]. The diffusion coefficient depends on the process pressure, and additionally, convection is also governed by the total incoming volumetric flow rate [28]. In case of a higher volumetric flow, the influence of the convection as compared to the diffusion increases (Figure 2 and Figure 3). For
PDF
Album
Full Research Paper
Published 28 May 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • and aged LiMnO2 cathodes and found a decrease of the diffusion coefficient in the aged sample due to structural degradation of the material [30]. Zhu et al. studied the degradation of LiNi0.3Co0.3Mn0.3O2 by ESM and showed a decrease in the ESM amplitude over the ageing of the cathode material, which
  • reaction model [56][65][78]. This faulty assumption affects the diffusion coefficients extracted from the experimental data. Additionally, the preparation of the material influences the diffusion coefficient [75][77]. The assumed 10 nm of probed depth is a reasonable assumption considering the sharp
  • boundaries observed in the ESM signals. Smaller values for the probed depth are however possible, which would change the diffusion coefficients by one or two orders of magnitude. Regarding the comparison of fresh and aged diffusion coefficient distributions, the minor differences between the fresh and aged
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020
Other Beilstein-Institut Open Science Activities